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Abstract Recombinant adeno-associated virus 2 (AAV) vectors have proven to be a potentially useful alternative
to the more commonly used retroviral and adenoviral vectors for gene therapy in humans. Their safety and efficacy in
Phase I clinical trials for gene therapy of cystic fibrosis and hemophilia B have been well documented, and their
remarkable versatility and efficacy in a wide variety of pre-clinical models of human diseases have catapulted these
vectors to the forefront. AAV vectors have been shown to be particularly well suited for transduction of brain and muscle
cells. However, controversies exist with regard to their utility as a vector for gene transfer into human hematopoietic
stem cells. On the one hand, some investigators have concluded that AAV vectors do not transduce hematopoietic stem
cells at all, and others have reported that stem cell transduction requires enormously high vector-to-cell ratios. On the
other hand, some investigators have reported high-efficiency transduction of human hematopoietic stem cells at low
vector-to cell ratios. This article will provide a historical perspective as well as attempt to elaborate the reasons behind
these controversies which have become clearer by studies focused on understanding, at the molecular level, the
fundamental aspects of the life cycle of recombinant AAV vectors. J. Cell. Biochem. Suppl. 38: 39–45, 2002.
� 2002 Wiley-Liss, Inc.
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The adeno-associated virus 2 (AAV)-based
vectors have gained attention as an alternative
to the more commonly used retrovirus- and
adenovirus-based vectors primarily because of
the non-pathogenic nature of the wild-type (wt)
AAV[Muzyczka,1992;BernsandGiraud,1996].
Recombinant AAV vectors have been shown to
transduce certain cell types, such as brain and
muscle, exceedingly well [Kaplitt et al., 1994;

Xiao et al., 1996]. However, controversies exist
with regard to the efficacy of AAV vectors in
transducinghematopoietic stemcells.There are
three different viewpoints. First, AAV vectors
do not transduce primary CD34þ progenitor
cells [Alexander et al., 1997]. Second, CD34þ

cells can be transduced by AAV vectors, but
extremelyhighmultiplicities-of-infection (MOI)
are required [Malik et al., 1996; Hargrove et al.,
1997; Nathwani et al., 2000]. And third, AAV
vectors can efficiently transduce CD34þ cells at
relatively low MOIs [Ponnazhagan et al., 1997;
Chatterjee et al., 1999]. Recent studies have
unraveled most, if not all, of the confounding
factors responsible for the genesis of these con-
troversies, and a clearer picture has now
emerged. A brief historical perspective follows.

Zhou et al. [1994] first reported success-
ful transduction of human CD34þ cells by
recombinant AAV vectors. These studies were
subsequently corroborated by a number of in-
vestigators [Goodman et al., 1994; Miller et al.,
1994; Walsh et al., 1994; Fisher-Adams et al.,
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1996; Luhovy et al., 1996]. However, Alexander
et al. [1997] failed to observe efficient infection
of these cells, and attributed the low-level
transduction to pseudotransduction mediated
by contaminants in the vector stocks.

In order to address this discrepancy, Ponnaz-
hagan et al. [1997] undertook a systematic
study in which CD34þ cells from twelve differ-
ent hematologically normal volunteer donors
were either mock-infected, or infected with 100
MOI of a recombinant AAV-lacZ vector under
identical conditions and analyzed for lacZ gene
expression by fluorescence-activated cell sort-
ing (FACS). These results are shown in Table I.
Of the twelve donors studied, CD34þ cells from
six showed no detectable activity of lacZ gene
expression, whereas the transduced gene ex-
pression could be readily detected in cells from
the remaining six donors. However, among the
six positive donor samples, the level of the
transduced lacZ gene expression varied signifi-
cantly and ranged between 15 and 80%.

In 35S-labeled AAV-binding experiments, it
was also documented that, whereas the virus
could bind to CD34þ cells from a positive donor,
little binding occurred with CD34þ cells from
a negative donor under identical conditions.
Similarly, viral DNA entry assays revealed that
viral entry occurred in CD34þ cells that were
positive for lacZ gene expression, but not in
CD34þ cells that did not show expression of the
lacZ gene. These results prompted Ponnazha-
gan et al. [1996] to further reinforce their
contention that AAV infection of human cells

involved a putative cellular receptor [Ponnaz-
hagan et al., 1994]. This proposal was based on
the fact that the first human cell type had been
identified that could not be infected by the wt
AAV, or transduced by a number of different
recombinant AAV vectors [Ponnazhagan et al.,
1996].

The search for the putative cell surface
receptor for AAV infection intensified, and in
1998, cell surface heparan sulfate proteoglycan
(HSPG) was identified as a cellular receptor
for AAV [Summerford and Samulski, 1998].
The ubiquitous expression of HSPG, perhaps,
accounts for the broad host-range of AAV.
Bartlett et al. [1999] subsequently documented
that AAV infectivity correlated strongly with
HSPG expression. Thus, the conclusion that
CD34þ cells are non-permissive for AAV infec-
tion [Alexander et al., 1997] is erroneous since
analyzing CD34þ cells from a limited number of
donors can be misleading given the significant
donor variation in terms of receptor expression
[Ponnazhagan et al., 1997].

More recent studies by Qing et al. [1999] and
Summerford et al. [1999] led to the identifica-
tion of human fibroblast growth factor (FGF)
receptor 1 (FGFR1) and aVb5 integrin, respecti-
vely, as putative cell surface co-receptors for
efficient infection by AAV. These studies led to
the conclusion that following initial attachment
of AAV to the cell surface via HSPG receptor,
efficient entry of the virus requires the presence
of a putative cellular co-receptor. Based on all
the available information, a model for AAV
infection has been proposed, which is depicted
in Figure 1. In this model, co-expression of cell
surface HSPG and FGFR1 is required for suc-
cessful AAV binding followed by viral entry.
Thus, the lack of expression of HSPG and/or
FGFR1might in some cases account for the lack
of transduction of hematopoietic stem cells by
AAVvectors. Qing et al. [1999] also documented
that AAV binding and infection are strongly
inhibited by FGF, which might also contribute
to the inefficient transduction if AAV infection
is carried out in the presence of serum, which
contains FGF.

Qing et al. [1999] also documented that AAV
binds to murine NIH3T3 cells efficiently, but
little transgene expression occurs. This obser-
vation was originally interpreted as the inabil-
ity ofAAV to enter these cells.However,Hansen
et al. [2000] documented that the lack of trans-
gene expression in NIH3T3 cells was not due to

TABLE I. Donor Variation in the Level of
the Transduced lacZ Gene Expression in

CD34þ Cells

Donor % Cells expressing the lacZ gene

1 1
2 80
3 50
4 37
5 0
6 0
7 15
8 0
9 0

10 2
11 53
12 29

Equivalent number (1.5� 105) of CD34þ cells from each donor
(50% females, 50% males; average age 25 years) were
transduced with the same stock of a recombinant AAV-lacZ
vector at an MOI of 100 transducing units (�1� 107 particles)
per cell, and 48 h post-infection, percentage of cells expressing
the lacZ gene, compared with mock-transduced controls, was
determined by FACS [Ponnazhagan et al., 1997].
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the lack of viral entry as determined by both
Southern blot analysis of viral genomes and by
using fluorescently-labeled AAV. They further
documented that despite successful entry, a
significant fraction of AAV vectors failed to
enter the nucleus in NIH3T3 cells as deter-
mined by Southern blot analysis of the viral
genomes in the cytoplasmic and nuclear frac-
tions. Hansen et al. [2000] also concluded that
AAV transduction efficiency correlates well
with the extent of viral trafficking into the
nucleus. Hansen et al. [2001] subsequently
documented that in permissive cells, AAV
escapes the early endosomes prior to efficient
transport across the nuclearmembrane, where-
as in less permissive cells, AAV fails to do so.
These observations are summarized in a model
shown in Figure 2. When these studies were
extended to include primarymurine Sca1þ, lin�

hematopoietic cells from C57Bl6 donor mice,
which were either mock-infected or infected
with a recombinant AAV vector containing
the CMV promoter-driven enhanced green
fluorescence protein (EGFP) reporter gene and
transplanted into lethally-irradiated congenic
recipient mice, a significant fraction of AAV
genomes failed to gain entry into the nucleus in
spleen cell colonies (CFU-S) harvested twelve
days post-transplantation [Tan et al., 1999].
Thus, impaired intracellular trafficking to the
nucleus might account, in part, for the observed

lack of high-efficiency transduction of hemato-
poietic stem cells by AAV vectors.

In 1996, studies from two independent labo-
ratories suggested that AAV second-strand
DNAsynthesis is a rate-limiting step in efficient
transduction by AAV vectors [Ferrari et al.,
1996; Fisher et al., 1996]. Qing et al. [1997]
reported the identification of a cellular pro-
tein that interacts with the single-stranded
D-sequence in the AAV inverted terminal
repeat (ITR). This protein, designated the
single-stranded D-sequence-binding protein
(ssD-BP), was shown to be phosphorylated at
tyrosine residues by epidermal growth factor
receptor protein tyrosine kinase (EGFR PTK)
[Mah et al., 1998], and the tyrosine phosphory-
lated state of the ssD-BPwas shown to correlate
well with the transduction efficiency of AAV
vectors in human cells in vitro and murine
tissues in vivo [Qing et al., 1998]. Qing et al.
[2001] subsequently purified this protein and
identified it to be a cellular protein that binds
the immuno-suppressant drug FK506, termed
the FK506-binding protein (FKBP52). FKBP52
was purified using a prokaryotic expression
plasmid containing the human cDNA. FKBP52
haspreviouslybeen shown tobephosphorylated

Fig. 1. Amodel for the role of cell surface HSPG and FGFR1 in
mediating AAV binding and entry into the host cell. Co-
expression of HSPG and FGFR1 and/or aVb5 integrin (not
shown) is required for successful binding of AAV followed by
viral entry into a susceptible cell (Panel a), both of which are
perturbed by the ligand, bFGF, which also requires the HSPG-
FGFR1 interaction (Panel b). [Qing et al., 1999]

Fig. 2. A model for intracellular trafficking of AAV in
permissive (Panel A) and semi-permissive (Panel B) cells. AAV
binds and enters the early endosomes of both cell types
efficiently (a). In permissive cells, most of the virions progress
down the endocytic pathway (b), enter a dense endocytic
organelle with a low pH, undergo a putative capsid modifica-
tion (?), and subsequently enter the nucleus by an unknown
mechanism (c). This process can be blocked by inhibitors of
endosomal acidification in which case virions enter the nucleus
by a less efficient pathway (d). In contrast, virions in semi-
permissive cells fail to pass through dense, acidic endosomes,
and therefore, do not traffick efficiently to the nucleus. Instead,
AAV escapes from early endosomes and inefficiently enters the
nucleus by an alternate route (b). [Hansen et al., 2001]
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at serine/threonine residues. The purified pro-
tein could be phosphorylated at both tyrosine
and serine/threonine residues, and only the
phosphorylated forms of FKBP52 were shown
to interact with the AAV single-stranded
D-sequence probe. Furthermore, in in vitro
DNA replication assays, the tyrosine-phos-
phorylated FKBP52 inhibited the AAV second-
strand DNA synthesis by greater than 90%.
The serine/threonine-phosphorylated FKBP52
caused �40% inhibition, whereas the depho-
sphorylated FKBP52 had no effect on the AAV
second-strand DNA synthesis. Deliberate over-
expression of FKBP52 effectively reduced the
extent of tyrosine-phosphorylation of this pro-
tein resulting in a significant increase in AAV-
mediated transgene expression in human and
murine cell lines. These studies corroborate
that the phosphorylation status of the cellular
FKBP52 protein correlates strongly with AAV
transduction efficiency [Qing et al., 1998].

Based on all available data, Qing et al. [2001]
have proposed a model, which is depicted in
Figure 3. In this model, cellular FKBP52,
phosphorylated at both tyrosine and/or serine/
threonine residues, specifically interacts with
the single-stranded D-sequence within the
AAV-ITRs and blocks the viral second-strand
DNA synthesis. The model predicts that tyr-
osine-phosphorylated FKBP52 is more inhibi-
tory than that phosphorylated at serine/
threonine residues. Infection with adenovirus,
expression of adenovirus E4orf6 protein, or
treatments with inhibitors of tyrosine and
serine/threonine kinase inhibitors lead to
dephosphorylation of FKBP52 which binds
poorly to theD-sequence, thereby allowing viral
second-strand DNA synthesis, and conse-
quently, efficient transgene expression. These
studies imply that the phosphorylation status of
the cellular FKBP52 might account for the
observed lack of high-efficiency transduction of
hematopoietic stem cells by AAV vectors. Thus,
in addition to the use of recombinant AAV
vectors that might not be completely free of
contaminating, wt AAV-like particles [Wang
et al., 1998], efficient transduction of primary
hematopoietic stem cells by AAV vectors might
be limited by one or more of the following:

1. Lack of appropriate receptor/co-receptor
expression for AAV binding and entry,

2. Lack of efficient intracellular trafficking of
AAV to the nucleus, and

3. Lack of optimal conversion to transcription-
ally-active double-stranded AAV genome.

The efficiency of conversion to the double-
stranded form also has implications in the
integration of the proviral genomewith the host
cell chromosomal DNA. Although some reports
have implied that AAV-mediated transgene
expression in CD34þ cells is transient presum-
ably because of less efficient integration [Malik
et al., 1997; Nathwani et al., 2000], integration
of the viral genome in human CD34þ cells and
their progenitors in vitro has been documented
by polymerase chain reaction (PCR) [Goodman
et al., 1994], Southern blotting [Fisher-Adams
et al., 1996], as well as by fluorescence in situ
hybridization (FISH) [Chatterjee et al., 1999]
analyses. PCR-based assays have also been
used to imply that long-term repopulating
hematopoietic stem cells can be successfully

Fig. 3. A model for the role of the cellular FKBP52 protein in
AAV second-strand DNA synthesis. FKBP52, phosphorylated
either at tyrosine residues by the EGFR PTK, or at serine/
threonine residues by an unknown cellular serine/threonine
protein tyrosine kinase, interacts with the D(�) sequence in the
AAV-ITR, and inhibits the viral second-strand DNA synthesis.
Co-infection with adenovirus, expression of adenovirus E4orf6
protein, or treatments with inhibitors of tyrosine and serine/
threonine kinase inhibitors lead to dephosphorylation of
FKBP52 which can no longer bind to the D(�) sequence,
thereby allowing the viral second-strand DNA synthesis, and
consequently, efficient transgene expression. [Qing et al., 2001]
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transduced by recombinant AAV vectors in
murine and rhesus monkey models, respec-
tively [Ponnazhagan et al., 1997; Schimmenti
et al., 1998]. More recently, using Southern
blot analyses of total genomic DNA from bone
marrow cells obtained from recipient mice
14 months post-transplantation, Tan et al.
[2001] have provided conclusive evidence that
recombinant AAV vectors are capable of med-
iating high-efficiency, stable transduction of
murine hematopoietic stem cells in vivo.
Thus, it has become increasingly clear that

systematic studies have led to a better under-
standing of most, if not all, of the controversies
with reference to hematopoietic stem cell trans-
duction by recombinant AAV vectors. It is also
clear that further studies focused on under-
standing, at the molecular level, the funda-
mental aspects of the life cycle of AAV vectors
will be parlayed into optimal transduction of
hematopoietic stem cells by recombinant AAV
vectors. Some of these strategies include delib-
erate expression of HSPG and/or FGFR1 genes
to allow high-efficiency of vector binding and
entry, manipulation of specific cellular orga-
nelle structures to improve intracellular vector
trafficking to the nucleus resulting in increased
transduction, and modulation of the phosphor-
ylation status of the cellular FKBP52 protein
leading to highly efficient viral second-strand
DNA synthesis and transgene expression as
well as rapid conversion to duplexDNA, leading
to high-efficiency integration of the proviral
genome into the host chromosome resulting in
stable transduction and long-term transgene
expression.
Additional strategies, which have already

been used, include the development of CD34-
targeted vectors [Yang et al., 1998], the use of
serotypes other thanAAV2 [Handa et al., 2000],
and pseudotytping the recombinant AAV gen-
omes into the human parvovirus B19 capsids
[Ponnazhagan et al., 1998; Weigel-Kelley et al.,
2001].
In all, in contrast to the currently prevalent

view that recombinantAAVvectors areunlikely
to be useful for hematopoietic stem cell trans-
duction [Russell and Kay, 1999; van Os et al.,
1999; Halene and Kohn, 2000; Van Tendeloo
et al., 2001], a more complete understanding of
the virus–host cell interactions will ultimately
lead to the development of additional strategies
to achieve high-efficiency transduction of these
cells byAAVvectors,which in turn,will prove to

be a safer alternative to the more commonly
used retroviral vectors in hematopoietic stem
cell gene therapy applications.
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